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OPINION

Phenomes: the current frontier in animal 
breeding
Miguel Pérez‑Enciso1,2*  and Juan P. Steibel3,4

Abstract 

Improvements in genomic technologies have outpaced the most optimistic predictions, allowing industry‑scale 
application of genomic selection. However, only marginal gains in genetic prediction accuracy can now be expected 
by increasing marker density up to sequence, unless causative mutations are identified. We argue that some of the 
most scientifically disrupting and industry‑relevant challenges relate to ‘phenomics’ instead of ‘genomics’. Thanks to 
developments in sensor technology and artificial intelligence, there is a wide range of analytical tools that are already 
available and many more will be developed. We can now address some of the pressing societal demands on the 
industry, such as animal welfare concerns or efficiency in the use of resources. From the statistical and computational 
point of view, phenomics raises two important issues that require further work: penalization and dimension reduc‑
tion. This will be complicated by the inherent heterogeneity and ‘missingness’ of the data. Overall, we can expect that 
precision livestock technologies will make it possible to collect hundreds of traits on a continuous basis from large 
numbers of animals. Perhaps the main revolution will come from redesigning animal breeding schemes to explicitly 
allow for high‑dimensional phenomics. In the meantime, phenomics data will definitely enlighten our knowledge on 
the biological basis of phenotypes.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
For the last two decades, genotyping and sequencing 
technologies have outpaced the most optimistic predic-
tions, allowing industry-scale application of genomic 
selection. Today, genomics is a mature technology but 
unfortunately the momentum may be fading away. 
Increasing marker density follows the law of diminish-
ing returns, unless the causative mutations are identi-
fied. Simulation and empirical results have shown that 
only marginal gains in genetic prediction accuracy can 
be expected by genome sequencing data instead of high-
density genotyping data [1, 2]. This small advantage will 
probably vanish when the extra cost of computer storage 
and power that sequence analyses require compared to 
genotyping arrays are accounted for.

Looking forward, we argue that some of the most sci-
entifically disrupting and industry-relevant challenges 
relate to ‘phenomics’ instead of ‘genomics’, as introduced 
in the premonitory words of Mike Coffey at the 2011 
ICAR meeting, “In the age of the genotype, phenotype 
is king”. Phenomics, which is defined as ‘the acquisition 
of high-dimensional phenotypic data on an organism-
wide scale’ [3], has flourished thanks to the development 
of all kinds of electronic devices and internet availabil-
ity. Currently, sensors are able to inexpensively record 
images, videos, sounds, or a multitude of environmental 
parameters, making large-scale, continuous phenotyping 
possible. Improvements in this vast area occur at breath-
taking pace.

However, there are some caveats in the ‘phenome’ 
concept [4]. While the genome, i.e., the DNA sequence, 
is finite and can in principle be fully characterized, the 
phenome is not a closed, fully-defined entity, and it will 
never be. An infinite number of phenotypes can be imag-
ined: simply consider all the mathematical combinations 
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of measured traits that can be defined. Furthermore, 
phenotypic measurements may involve several individu-
als simultaneously, as in many welfare and behavioral 
traits. Therefore, a phenome will always be a subset of 
an infinite number of possible measurements that may 
span several individuals. The difference with a ‘stand-
ard’ breeding setting is that, in the new paradigm, both 
the genome and the phenome are high-dimensional vari-
ables. Furthermore, whereas genome data are relatively 
homogeneous, phenome measurements can be highly 
heterogeneous and time-dependent. An example is the 
composition of microbiota, which change from birth 
to adult stages and may vary with health status. In this 
sense, it is important to realize that phenomics ‘big data’ 
problems arise because of the heterogeneity and rapid 
change over time of the data, not because of their size.

Compared to plant breeding or human genetics [3], 
animal phenomics has received somewhat less atten-
tion. This is surprising since new technologies allow the 
assessment of new phenotypes that are in high demand 
by the society, such as those related to animal welfare, 
resilience, disease incidence or resource use efficiency 
[5–8]. Fortunately, recent work indicates that animal phe-
nomics is becoming popular in the animal sciences too, 
e.g., [9–12], and as reflected in public initiatives such as 
the USDA Agricultural Genomes to Phenomes Initiative 
AG2PI (https ://www.ag2pi .org/).

The novelty around high-throughput phenotyping 
in farm animal populations comes from two angles: (1) 
novel traits can be defined and measured that could not 
be recorded before, and (2) classical traits can now be 
observed on an almost continuous basis and in a non-
invasive way on large numbers of animals under normal 
production environments. However, we can expect the 
datasets to be partially incomplete, noisy and partially 
redundant, especially when traits are recorded on a con-
tinuous basis.

With this opinion paper, our aim is to foster discus-
sion and further research in the area. Towards this, we 
briefly recall some of the most relevant traits that can be 
captured by modern technologies, and then discuss the 
future needs in terms of methods and algorithms and 
the possible long-term impact of phenomics in breeding. 
The focus of this note is on the use of sensors to collect 
measures on animals themselves, but note that sensors 
can and are used to record all sorts of environmental var-
iables (climate, pathogen exposure, etc.), which are also 
highly relevant for animal management and breeding.

Standard and new traits (re)visited
Behavior at the individual and group levels
Behavior and social interactions between animals can 
greatly affect production and performance phenotypes 

and are a major component of animal welfare. Given the 
difficulty of measuring behavior before the ‘phenomics 
era’, in genetic evaluations the effect of behavior on pro-
duction traits has been either ignored or accounted for 
indirectly, e.g., by using social genetic effects models [13]. 
However, selection to modify behavior is possible since 
some behaviors, especially those related to aggression, 
are partially heritable [14]. Understanding and modify-
ing the genetic factors that induce fighting between pairs 
of animals is valuable not only for selection, but also for 
management purposes, as groups could be formed based 
on the genetic makeup of animals that are expected to 
fight less with each other. As a result, welfare and pro-
ductivity should increase.

Today, behavioral traits can be measured with wear-
able sensors and computer vision techniques [15–17]. 
Behavior metrics can affect single individuals but often 
involve pairs or larger groups of animals. If behaviors 
are measured at the individual level, multi-trait direct 
genetic effects models can be used to obtain breeding 
values for the behaviors of interest together with produc-
tion and welfare traits [18]. A less explored option is the 
modeling of behavior at the dyadic level (i.e., in individ-
ual pairs). This type of data has been used to parameter-
ize social genetic effects models [19], but it could also be 
analyzed as a response matrix in a quantitative genetic 
study to determine, e.g., which genetic factors affect 
a group mate to be attacked. This type of analysis has 
not been performed yet, but dyadic behavioral data are 
being collected in livestock species and have been used 
to build social networks [20]. A typical interaction behav-
ior is aggression (e.g., post-mixing attacks), where we dis-
tinguish between an individual measure and a group or 
dyadic measures. For instance, the total amount of time 
that each animal spends engaged in fighting represents 
an individual-level observation. But when the amount of 
time spent fighting is annotated for each pair of animals 
in a social group, a dyadic phenotypic dataset is gener-
ated. This type of datasets allows the development of spe-
cific, new modeling strategies (Fig. 1).

Gas emissions
Genetic selection for reduced greenhouse gas emissions 
is possible, given that the trait is heritable and geneti-
cally correlated with other traits such as milk produc-
tion and residual feed intake [21]. Traditional measuring 
methods that involve respiration chambers and analysis 
of tracer elements are not readily scalable for applica-
tion in high-throughput phenotyping. However, recently 
developed spectroscopy technology for “breath analysis” 
can be applied on a large scale to measure methane emis-
sions. This technology can be incorporated into on-farm 
devices such as feeding kiosks or milking robots and used 

https://www.ag2pi.org/
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to measure instantaneous methane emissions on thou-
sands of animals as they voluntarily approach measuring 
stations several times per day [22].

Like other phenotyping data described in this paper, 
incorporating high-throughput measures of emissions 
into genetic evaluations will require the integration of 
heterogeneous data sources. In this case, the heterogene-
ity will arise not only from a variety of measuring devices, 
but also from the different sampling schemes and meas-
ures. Highly processed and distilled data such as esti-
mated total emissions per day will be available for some 
individuals together with raw instantaneous measure-
ments of emission for other animals.

Feed efficiency
Feed efficiency largely determines farm exploitation 
costs and has been measured on farms on a limited 
scale for many years now. As with behavior, measur-
ing feed efficiency accurately and massively has only 
been possible due to sensor technology, via automatic 
feed recording devices [23]. An inherent characteris-
tic of feed intake and feeding behavior data obtained 
with automatic feeders is its incompleteness and its 

heterogeneity [24]. Because different devices are used 
to record and pre-process feed intake data, the meas-
ured traits may be slightly different. Sometimes, due 
to malfunction, there may be partially missing data, 
for instance, meal is recorded but no animal identity 
(ID) is attached to it or an animal’s visit is recorded 
but the feed intake is clearly wrongly measured or not 
measured at all. These peculiarities of the data record-
ing process need to be accounted for in the analysis 
pipelines, including raw data processing, cleaning, and 
imputation.

On the data modeling side, there are opportuni-
ties to extract extra information and novel traits from 
automatic feeding station data. The sequences of the 
visits to the feeders, the time between visits and the 
co-occurrence of animals in multi-space feeders can be 
mined to uncover interactions between animals. Also, 
meal characteristics extracted from automatic feeders 
have been used to parameterize social genetic effects 
models [25]. Combining automatic feeding data with 
computer vision algorithms will likely shed further light 
on these problems.

a b

c
d

Fig. 1 Emerging behavioral data in the phenomics era and the need for new models. a Behavioral phenotyping for social interactions results in 
a matrix of dyadic interactions, Zs, that can be collapsed to individual behavioral data (w and y). b Existing genomics and phenomics data can 
be integrated with behavioral phenotypes. c Classic genomic evaluation models focus on multi‑trait analyses of individual behaviors or on social 
genetic effects models where the interaction matrix is used as a predictor of existing phenotypes. d In novel models, multi‑trait analyses have to 
include full behavioral matrices to be able to predict the dyadic interactions from rker data
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Traditional phenotypes revisited
Sensor technology allows the measurement of new phe-
notypes but is also disrupting how ‘standard’ traits, such 
as weight or conformation, are recorded. In the case of 
weight and condition score, traditional methods typi-
cally require moving the animals and are labor inten-
sive; for that reason, only a limited number of measures 
can be taken in each production cycle. With the advent 
of phenomics, these traditional phenotypes can be col-
lected automatically on a continuous basis on a massive 
number of animals, without the need to disturb them. 
For instance, weight can be accurately measured using 
3D imaging [17], or conformation features can be meas-
ured from images [26]. These precision livestock farming 
devices record under normal production conditions of 
market animals, and not only on elite animals in nucleus 
farms. Together with these measures, environmental 
records of similar temporal and spatial resolution can be 
obtained from weather stations or from barn environ-
ment controlling devices.

Nevertheless, the incorporation of automatically-
measured body condition score or weight gain into exist-
ing genomic evaluations imply unique challenges. Data 
streams from continuously-measured live-weight on mil-
lions of animals will have to be summarized and cleaned 
before feeding them into existing genetic evaluations. 
Cleaning data by detecting outliers before fitting growth 
curves to individual records may not be efficient in the 
phenomics era; instead, robust data analysis techniques 
such as non-linear quantile regression can be used for 
growth curves using all available data points but avoid-
ing the effect of outlying observations. Finally, having full 
growth curves from each animal will allow the evaluation 
of new traits around these traditional phenotypes.

Traceability and identification
Environmental data collected by sensors allow the study 
of genotype-by-environment interactions at a higher res-
olution scale than has been so far possible and the incor-
poration of production farm records into the evaluation 
of elite animals. However, for such uses, the data need 
to be linked in some way: phenotypic records of produc-
tion animals need to be linked to parental genotypes and 
to environmental and production records. In symmetry, 
continuous individual identification throughout the pro-
duction cycle will open the opportunity to record many 
new traits. Thus, the needs for animal identification and 
tracking as well as the synchronization of real-time data 
streams will increase.

Currently, individual identification is attained through 
computer vision of marked or unmarked animals or 
using wearable radio frequency identification (RFID) 
devices that remain with each animal for the duration of 

their productive life. Computer vision algorithms for ani-
mal identification use different techniques, such as natu-
ral variation in appearance (conformation, coat color, 
etc.) of the whole animal, visual marking or tags that are 
permanently or temporarily attached to the animals [27–
29]. Ideally, a computer vision algorithm will work using 
images of panoramic views of the animal space (pen or 
barn), which are taken with ceiling or high-wall mounted 
cameras that include images of several animals in the 
same picture frame.

Automatic, reliable animal identification is not a solved 
issue. Among the challenges that need to be addressed 
are: (1) improving current computer vision algorithms 
for animal ID and tracking using top-view cameras in 
normal production conditions, (2) the integration and 
synchronization of multiple data streams (e.g., RFID 
detection logs with video streams from more than one 
video camera), and (3) the ascertainment of animal iden-
tification or accounting for uncertain ID. For instance, 
what is to be done if the animal identification algorithm 
produces two likely ID with a roughly similar probability 
for a single animal image? Shall the ID be treated as miss-
ing data? Or should the uncertainty be propagated into 
the animal genetic evaluation by using methods similar 
to those proposed for dealing with uncertain paternity 
[30–32]? These questions will be revisited when these 
kinds of data streams become common.

High dimensionality
At the end of the day, phenomics technologies deliver 
highly-dimensional data that need to be processed and 
incorporated into breeding and management decisions. 
Two main, related statistical issues are relevant in this 
context: dimension reduction and penalization. Dimen-
sion reduction consists of obtaining new ‘synthetic’ vari-
ables that are combinations of the original dimensions. 
A usual justification of dimension reduction is that only 
a few dimensions are actually relevant, and that dimen-
sionality is artificially high. Penalization refers to setting 
constraints of the parameter solutions in the predictive 
model.

In practice, dimension reduction techniques are mainly 
used for visualization. New variables in the reduced 
dimensional space are derived to retain the original data 
pattern as faithfully as possible. In principal component 
analysis (PCA), the new variables are the linear combina-
tions of the original phenotypes that explain the maxi-
mum possible variance, with the additional constraint 
of being orthogonal between them. PCA, together with 
multidimensional scaling (MDS), are perhaps the most 
widely used dimension reduction tools, but interesting 
and less well-known options exist and can be good alter-
natives. Some of these provide nonlinear approximations, 
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in contrast to linear PCA. An ‘autoencoder’ (AE) is one of 
such nonlinear alternatives [33]. Autoencoders are ‘deep 
learning’ (DL) algorithms, i.e., they are based on several 
stacked layers of neurons (Fig. 2). However, in contrast to 
a typical DL network, where output and input are differ-
ent, both input and output are the same in AE. Thus, they 
are unsupervised techniques, as they are mainly dimen-
sionality reduction methods. If no restriction is set, the 
optimum AE solution is the identity vector and recon-
structed output is identical to input. It is then necessary 
to set some constraints, i.e., penalizations, to optimize 
the AE network. In the specific case of one single layer 
and a linear activation function, it has been shown that 
AE and PCA yield basically the same solution [34].

Another interesting dimension reduction algorithm is 
t-distributed stochastic neighbor embedding (t-SNE, van 
der Maaten and Hinton [35]). The goal of t-SNE is to find 
a low dimensional representation whereby similar data-
points in the original space are shown together and dis-
tant samples are shown far apart. The most important 
difference between PCA and t-SNE is that the former is 
a projection onto a lower dimensional space, whereas the 
latter is a representation strategy. Besides, by construc-
tion, PCA is aimed at maximizing distances when sam-
ples are plotted in the low dimensional space. MDS is a 
generalized approach for PCA and, similar to t-SNE, it 
is designed for preserving distances between samples. 

However, t-SNE offers a series of advantages over MDS; 
in particular, it reduces the tendency of samples to clus-
ter together, which is caused by a large number of dimen-
sions and results in increased resolution. It seems that 
neither t-SNE nor autoencoders are popular in animal 
phenomics, but they are techniques worth exploring 
since they offer complementary information to standard 
linear methods. Figure  3 illustrates how different algo-
rithms can provide dramatically different representations 
in the low dimensional space.

Penalization refers to setting constraints on variables 
to avoid collinearity and overfitting problems when the 
number of variables is large. As well known, penaliza-
tion is needed to avoid the method ‘learning’ irreproduc-
ible noise, i.e., one of the ‘curses of dimensionality’ [36]. 
Two main types of regularization have been proposed: 
L1 and L2. L1 consists in setting a constraint on the sum 
of absolute values of the solutions, whereas L2 refers to 
the sum of squared solutions [37]. Concepts such as prior 
information in a Bayesian framework are equivalent to 
penalization. Although numerous methods with differ-
ent names have been proposed in the Bayesian literature, 
most of them can be unified by realizing that they simply 
differ in the prior chosen [38]. In addition, deep learning 
technologies have developed specific additional regulari-
zation strategies. One of them is called ‘dropout’, which 
consists of randomly removing ‘neurons’ from the inner 

Fig. 2 Representation of an Autoencoder. Autoencoders (AE) are deep neural networks where the input and output are the same (in this case, 
multi‑channel pixel intensity values from images of livestock). They consist of an encoder that codes the input in a low dimensional latent space 
and a decoder that transforms back the input into a regularized version. Variational autoencoders (VAE) generate a probability function instead 
of a point latent space. Then, random numbers are drawn and transformed into simulated images by the decoder. Applications of AE and VAE to 
phenomics remain to be explored, but they can be used for unsupervised learning and imputation. The figure of the cow is from www.dream stime 
.com

http://www.dreamstime.com
http://www.dreamstime.com
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layers to force the system to use fewer parameters. In 
spite of its distinct definition, dropout can be interpreted 
from a Bayesian point of view, and thus can be viewed 
within the usual penalization framework [39]. Another 
approach used in some DL models is direct L1 or L2 
penalization on the neuron weights, i.e., a constraint is 
added on the sum of the absolute or square value of the 
weights.

Complexity, heterogeneity, and especially data size will 
notably increase in the phenomics era, which will have 
repercussions in the modeling approaches. It is some-
times erroneously believed that the influence of the 
prior vanishes with large datasets, but this is not the case 
since the prior will always have an effect on the solution, 
regardless of the amount of data [38]. Thus, it is worth 
studying the impact of alternative regularization strat-
egies, as we cannot expect that a single strategy will be 
optimum—from the predictive performance point of 
view—in all cases.

As just mentioned, the term ‘curse of dimensional-
ity’ has become popular in statistics and by extension in 
breeding to mean that increasing ‘unnecessarily’ the com-
plexity of a model leads to poor predictive performance 
[37]. The term ‘unnecessarily’ can be read as ‘without 
penalization’. According to Donoho [36], the term was 
initially coined to reflect the impossibility of enumerat-
ing all possible models as the number of variables grows. 
However, high dimensionality is a ‘blessing’ for many 
purposes, an aspect that is less widely acknowledged in 

our field. One reason is that having many highly corre-
lated variables helps to smooth out noise. A further, more 
relevant advantage is that increasing the number of vari-
ables usually results in penalized models with improved 
predictive performance [40]. Finally, increasing dimen-
sionality allows a gain in biological insight.

The way ahead
Strangely, one of the first obstacles that will need to be 
solved for routine phenome collection is access to broad-
band internet. Even in the USA, as much as 40% rural 
farms lack reliable access to broadband [9]. Aside from 
infrastructure issues, here we wish to focus on methodo-
logical issues.

Quality control and visualization techniques should 
be a first step in a phenomics pipeline. As phenotyping 
becomes a large-scale objective, reliability can be com-
promised and heterogeneity in environmental conditions 
may increase. However, bias can be a much more serious 
danger than error because phenome data will not be col-
lected randomly. Likely, special attention will be paid to 
elite farms or breeding nucleus, and certain phenotypes 
will be collected preferentially on specific farms. We can 
also expect differences in accuracy for data from elite 
farms compared to data from commercial farms, which 
will have to be accounted for through proper modeling.

As a result, phenome data will also be highly unbal-
anced: the kind and amount of data available will vary 
largely across individuals, even if sensors are widely 

Fig. 3 Comparison between PCA and t‑SNE dimensional reduction methods using the 3D ‘S’ shape in left panel. Note that PCA is a projection that 
aims at maintaining the maximum variance, whereas t‑SNE keeps local similarity in the low dimensional space. For instance, PCA projection clearly 
maintains the original ‘S’ shape, where the third dimension is lost. In contrast, the plot produced by t‑SNE is better at representing local relative 
distances, where the first dimension reproduces the contour of the shape and the second dimension, the relative position within that part of the 
contour. As a result of different targets, very different pictures emerge. Implications for phenomics are to be explored. Plot using scikit [53], slightly 
modified from J. Vanderplas code (https ://sciki t‑learn .org/stabl e/auto_examp les/manif old/plot_compa re_metho ds.html)

https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html
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spread and collect information routinely. It is unlikely 
that identical phenotypes are recorded on different 
farms or in different periods, whether milk recording or 
behavior measurements. This can be an important obsta-
cle, since it will require either removal of samples and/
or imputation of missing values. We need to develop 
efficient and accurate imputation tools or use methods 
dealing with missing data directly. In this aspect, plant 
phenomics measurements can often be more systemati-
cally compared and measured on a larger scale than in 
livestock.

Given that missing data is unavoidable, imputation will 
be needed. This is a wide area and numerous approaches 
exist depending on the specific problem, e.g., [41, 42]. 
However, it should be noted that most imputation tech-
niques assume that missing data is at random, a condition 
that phenome data will unlikely fulfill, as discussed above. 
A further issue with phenomics data is their heterogene-
ity and thus no general imputation rule can be given. In 
addition to standard imputation techniques [42], alter-
native approaches exist based on deep learning that, to 
our knowledge, have not been used in this area and can 
be promising. For instance, autoencoders can be used to 
fill ‘holes’ in data, in particular those with a spatial pat-
tern such as image and video. The standard autoencoders 

output is a regularized representation of the original 
input. This is accomplished via an ‘encoder’ that trans-
forms the data into a ‘latent space’ and a ‘decoder’ that 
takes the latent space coordinates and outputs a regu-
larized image. Instead of recoding the input into latent 
space coordinates, variational autoencoders (VAE) gener-
ate a probabilistic function to describe an observation in 
the latent space. As a result, realistic data-points can be 
generated. For instance, VAE have been used to increase 
the resolution of pictures or to restore damaged pictures, 
a problem that is conceptually identical to imputation. In 
the same vein, generational adversarial networks (GAN) 
are DL algorithms that can reproduce high-dimensional 
variables. So far, GAN have been mostly used to gener-
ate images, e.g., to generate very high-resolution pic-
tures out of incomplete or low-resolution images, or 
even videos [43, 44]. Figure  4 represents a scheme of 
a GAN for ‘inpainting’, i.e., completing missing parts in 
an image. Compared to VAE, GAN are much more flex-
ible, yet they are more difficult and slower to train. They 
also require larger amounts of data. Applying GAN and 
VAE concepts to imputation in phenomics is a promis-
ing area of research, given their flexibility and lack of dis-
tributional assumptions. However, caution applies, since 
these methods have been tested mainly with image data, 

Fig. 4 Representation of a generative adversarial network (GAN). This GAN aims at filling holes in an image (‘inpainting’, i.e., imputation). The 
generator network simulates a new image out of the input picture of the cow, which does not have front legs. The discriminator is trained with 
images that are true or fake and learns how a real cow looks like. The generator discriminates whether the generated image is true or fake, the result 
is passed on to the generator so that it can improve the quality of the output image. Each of the rectangles in the generator and the discriminator 
represent a group of neuron layers as in Fig. 3, the shape is approximately proportional to its dimension. The figure of the cow is from www.dream 
stime .com

http://www.dreamstime.com
http://www.dreamstime.com
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and performance in other scenarios has not been much 
explored.

However, even with complete data of reasonable size, 
there are important gaps in the current methodology 
and software that should be filled. There is an enormous 
range of analytical tools to be developed. Automatic indi-
vidual identification allowing for free range, or at least 
movement in group-housed animals under confinement 
is needed. This can be accomplished, e.g., using continu-
ous video recording and tracking. Algorithms that auto-
matically extract phenotypes from image, video, sound 
records are a very active area of research. Standard met-
rics (e.g., Hausdorff, Euclidean, etc.) to measure similari-
ties between images should be adapted to livestock, and 
new metrics for videos should be implemented as they 
are required to compare animal behaviors. Automatic 
conformation measures [26] must be improved to be per-
formed in vivo with minimal human intervention. A fur-
ther challenge is to incorporate all this information into 
genome predictions.

Not all species and breeding programs will benefit 
equally from phenomics. For instance, the aquaculture 
industry is highly advanced technologically and many 
measurements are difficult to obtain manually. Here, the 
use of phenomic technologies is far more widespread 
than in other species. Small ruminants in extensive farm-
ing may represent the opposite extreme. Yet, sensor tech-
nology can provide accurate animal tracking and remote 
measurement of physiological and environmental varia-
bles outdoors, which could boost productivity and health 
precisely in traditional, low-input agriculture condi-
tions. In general, those production systems where preci-
sion agriculture and precision livestock management are 
being implemented will be better equipped to collect rel-
evant phenomics data, and the limitation in those cases 
will be on data storage and transmission as well as data 
labeling and individual identification.

Although model interpretability is an issue [45, 46], 
experience shows that opening the ‘black box’ is not 
needed for accurate prediction [40]. Nevertheless, phe-
nomics data will definitely enlighten the biological basis 
of phenotypes and will complement genotype data. As 
geneticists, we are often in the quest of DNA causative 
polymorphisms. However, focusing on this search may 
often impede the detection of non-genetic factors that 
have a stronger effect on the phenotypic expression than 
the causative mutations. This has been observed, e.g., in 
expression quantitative trait loci (QTL) studies [47]. We 
contend that large-scale phenotyping is important per 
se, independently of whether genome data are available 
or not. In this context, structural equation modeling [48] 
but also unsupervised learning gains relevance. Influ-
ential DL pioneers, such as Yann LeCun, have actually 

argued that the future of artificial intelligence lies in 
unsupervised learning (https ://www.youtu be.com/watch 
?v=Ount2 Y4qxQ o&t=1072s , NIPS conference, 2016). 
This is because unlabeled data (unsuited for super-
vised learning) are far more abundant than labeled data 
and, more importantly, because unsupervised learning 
resembles more precisely how the human brain actually 
works. As phenome data are collected over the years in 
the same or similar breeding schemes, by using unsuper-
vised learning methods, we will gain invaluable knowl-
edge on the effects of selection on the whole organism. 
For instance, unsupervised learning may uncover unsus-
pected relationships between traits or between traits and 
environmental variables. We could, e.g., discover how 
some selection barriers can be overcome or how to opti-
mize economic weights dynamically.

Phenomics is a hot, promising area but is not exempt 
from risks and cannot be considered a panacea. As Cole 
et al. [12] warn us, ‘these new approaches have their own 
challenges, ranging from bias to interpretability and there 
is a temptation to oversell outcomes’. One serious issue 
is that, in contrast to genotypes, phenome data may not 
be easily transferable or comparable across farms. Often, 
measurement technology is proprietary and several sys-
tems, e.g., to measure methane emissions, coexist. Algo-
rithms to transform raw sensor data into meaningful 
measurements and sensors themselves rapidly change 
over time, making it difficult to analyze data longitudi-
nally. Standards and open-source algorithms in the sen-
sor industry are necessary to fully unravel the potential 
of phenomics. A way to foster the development of novel 
algorithms in this field is the distribution of relevant 
datasets to the research community and the organization 
of activities (hackathons, competitions and journal spe-
cial issues) around the analysis of such datasets. This is 
being done successfully in the fields of autonomous vehi-
cles, computer vision [49] and in many other areas (e.g., 
https ://www.kaggl e.com/compe titio ns).

Perhaps the main revolution will come from redesign-
ing animal breeding schemes to explicitly allow for highly 
dimensional phenomics. To begin with, do we need new 
definitions of breeding values? Genotype × environment 
(G × E) interactions can be an inspiring concept here. 
In essence, including G × E interactions in the model is 
equivalent to providing a function for the breeding value 
instead of a single value, a reaction norm. In the phenomics 
era, traditional point breeding values might be replaced by 
high-dimensional generative functions. It is not clear at this 
point how this will be accomplished. A natural approach is 
to use phenomics data to integrate mechanistic biological 
models into genetic evaluation. Examples are growth crop 
models in plants such as those developed by Totir et al. [50, 
51]. More generally, we hypothesize that phenomics-based 

https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s
https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s
https://www.kaggle.com/competitions
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genomic evaluations will likely be a combination of stand-
ard statistics methods with generative machine-learning 
and simulation tools. In a recent work, de los Campos 
et  al. [52] applied large-scale simulation conditioned on 
genotype and environmental variables to predict future 
performance but, instead of a point prediction, a whole 
distribution over uncertain, future climate conditions was 
generated. We can imagine that future phenomics-assisted 
breeding schemes will be able to simulate expected com-
plex phenotypes under a range of potential environmental 
conditions for each target genotype.

Conclusions
The influence of phenomics in livestock breeding has only 
begun and much work remains to be done. High dimen-
sionality is a ‘blessing’ rather than a ‘curse’ to improve 
prediction [40] and we should not be afraid of it. High 
dimensionality should also help breeders to fine tune 
which are the most relevant phenotypes, and what are 
the expected constraints. Making progress in phenomics 
depends on the fast-developing field of sensor technol-
ogy and machine learning. This reinforces the idea that 
the breeders of the future will require sound agronomic 
and biological backgrounds as well as a solid training in 
statistical and machine learning. This may seem paradoxi-
cal, but it will be the case because easy-to-use, powerful 
programming libraries and code will be widely available, 
whereas interpretation of results and application in breed-
ing schemes require specific biological and agronomic 
knowledge. Last but not least, breeders trained in phenom-
ics who can effectively collaborate with biologists, produc-
ers, engineers and computer scientists will have increased 
chances of succeeding in the job market.
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